Editing Emulation accuracy

Jump to navigation Jump to search

Warning: You are not logged in. Your IP address will be publicly visible if you make any edits. If you log in or create an account, your edits will be attributed to your username, along with other benefits.

The edit can be undone. Please check the comparison below to verify that this is what you want to do, and then save the changes below to finish undoing the edit.
Latest revision Your text
Line 1: Line 1:
 
;It's important to know that emulation accuracy and compatibility are two different things; while how closely an emulator mimics the original hardware is important, don't mistake that for compatibility. Whether games run properly is a separate concern, accuracy can sometimes influence it. See [[#Perfection.3F|"perfection"]] and [[#Controversy|"controversy"]] sections.
 
;It's important to know that emulation accuracy and compatibility are two different things; while how closely an emulator mimics the original hardware is important, don't mistake that for compatibility. Whether games run properly is a separate concern, accuracy can sometimes influence it. See [[#Perfection.3F|"perfection"]] and [[#Controversy|"controversy"]] sections.
  
;In the world of computing, terms like "[[Hypervisors|hypervisors]]", "[[Simulators|simulators]]", "[[Compatibility_layer|compatibility layers]]", "[[Wrappers|wrappers]]", "[[FPGA|FPGA-based hardware cloning]]" and "[[:Category:Emulators|software emulators]]" are often used interchangeably, leading to confusion. While they share some similarities, each technology serves a distinct purpose and operates at different levels.
+
;In the world of computing, terms like "[[Hypervisors|hypervisors]]", "[[Simulators|simulators]]", "[[Compatibility_layer|compatibility layers]]", "[[Wrappers|wrappers]]", "[[FPGA|FPGA-based hardware emulators]]" and "[[:Category:Emulators|software emulators]]" are often used interchangeably, leading to confusion. While they share some similarities, each technology serves a distinct purpose and operates at different levels.
  
 
Within the realm of computer science, emulation occupies a niche distinct from virtualization or other techniques. Whereas hypervisors usually used for partitioning physical hardware resources among multiple guest operating systems, and simulators where developers build virtual replicas of specific environments or processes, emulation endeavors to recreate an entire historical architecture. This digital reconstruction seeks to faithfully capture the instruction set, timing behaviors, hardware features and even peripheral nuances of a bygone hardware platform. Unlike compatibility layers, which translate software instructions to a native format, emulation builds a virtual stage upon which the software itself can perform authentically. Emulation's intricate tapestry sometimes intertwines with threads of other technologies though. Notably, certain emulators leverage hypervisors for a more efficient handling of resource allocation and isolation. Additionally, some emulators employ compatibility layers as subcomponents, acting as translators for specific libraries or APIs that might otherwise be incompatible with the host environment. Think of these layers as linguistic bridges, allowing the emulated software to converse fluently with the modern system hardware. By strategically merging these techniques and the help of skilled use of [[High/Low_level_emulation|HLE and LLE or Hybrid]], [[Dynamic_recompilation|compiler techniques]] and using specific features such as Fast Memory Access[https://github.com/PCSX2/pcsx2/pull/5821][https://github.com/PCSX2/pcsx2/pull/7295][https://yuzu-emu.org/entry/yuzu-fastmem/#what-is-fastmem][https://dolphin-emu.org/blog/2016/09/06/booting-the-final-gc-game/] and instruction set support (such as [https://whatcookie.github.io/posts/why-is-avx-512-useful-for-rpcs3/ AVX-512 for RPCS3]) and other various optimizations[https://yuzu-emu.org/entry/yuzu-progress-report-dec-2023/#android-adventures-and-kernels-with-benefits], certain emulators achieve impressive levels of performance and compatibility, further unlocking the doors to historical software [[Preservation_projects|preservation]].[https://youtu.be/cCXri4yDHmU]
 
Within the realm of computer science, emulation occupies a niche distinct from virtualization or other techniques. Whereas hypervisors usually used for partitioning physical hardware resources among multiple guest operating systems, and simulators where developers build virtual replicas of specific environments or processes, emulation endeavors to recreate an entire historical architecture. This digital reconstruction seeks to faithfully capture the instruction set, timing behaviors, hardware features and even peripheral nuances of a bygone hardware platform. Unlike compatibility layers, which translate software instructions to a native format, emulation builds a virtual stage upon which the software itself can perform authentically. Emulation's intricate tapestry sometimes intertwines with threads of other technologies though. Notably, certain emulators leverage hypervisors for a more efficient handling of resource allocation and isolation. Additionally, some emulators employ compatibility layers as subcomponents, acting as translators for specific libraries or APIs that might otherwise be incompatible with the host environment. Think of these layers as linguistic bridges, allowing the emulated software to converse fluently with the modern system hardware. By strategically merging these techniques and the help of skilled use of [[High/Low_level_emulation|HLE and LLE or Hybrid]], [[Dynamic_recompilation|compiler techniques]] and using specific features such as Fast Memory Access[https://github.com/PCSX2/pcsx2/pull/5821][https://github.com/PCSX2/pcsx2/pull/7295][https://yuzu-emu.org/entry/yuzu-fastmem/#what-is-fastmem][https://dolphin-emu.org/blog/2016/09/06/booting-the-final-gc-game/] and instruction set support (such as [https://whatcookie.github.io/posts/why-is-avx-512-useful-for-rpcs3/ AVX-512 for RPCS3]) and other various optimizations[https://yuzu-emu.org/entry/yuzu-progress-report-dec-2023/#android-adventures-and-kernels-with-benefits], certain emulators achieve impressive levels of performance and compatibility, further unlocking the doors to historical software [[Preservation_projects|preservation]].[https://youtu.be/cCXri4yDHmU]

Please note that all contributions to Emulation General Wiki may be edited, altered, or removed by other contributors. If you do not want your writing to be edited mercilessly, then do not submit it here.
You are also promising us that you wrote this yourself, or copied it from a public domain or similar free resource (see Emulation General Wiki:Copyrights for details). Do not submit copyrighted work without permission!

To edit this page, please answer the question that appears below (more info):

Cancel Editing help (opens in new window)